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Inertial Bénard–Marangoni convection
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Two-dimensional surface-tension-driven Bénard convection in a layer with a free-slip
bottom is investigated in the limit of small Prandtl number using accurate numerical
simulations with a pseudospectral method complemented by linear stability analysis
and a perturbation method. It is found that the system attains a steady state consisting
of counter-rotating convection rolls. Upon increasing the Marangoni number Ma
the system experiences a transition between two typical convective regimes. The
first one is the regime of weak convection characterized by only slight deviations
of the isotherms from the linear conductive temperature profile. In contrast, the
second regime, called inertial convection, shows significantly deformed isotherms.
The transition between the two regimes becomes increasingly sharp as the Prandtl
number is reduced. For sufficiently small Prandtl number the transition from weak to
inertial convection proceeds via a subcritical bifurcation involving weak hysteresis. In
the viscous zero-Prandtl-number limit the transition manifests itself in an unbounded
growth of the flow amplitude for Marangoni numbers beyond a critical value Mai. For
Ma < Mai the zero-Prandtl-number equations provide a reasonable approximation for
weak convection at small but finite Prandtl number. The possibility of experimental
verification of inertial Bénard–Marangoni convection is briefly discussed.

1. Introduction
Experimental investigation of surface-tension-driven Bénard convection (STDBC,

also called Bénard–Marangoni convection) in low-Prandtl-number fluids (liquid met-
als or semiconductor melts) is a difficult task, which has to date only once been
accomplished successfully by Ginde, Gill & Verhoeven (1989). Numerical simulations
offer the opportunity to circumvent the difficulties and high costs of experiments
while imposing only a few a priori restrictions on the parameters of the problem.
The goal of the present work is to develop direct numerical simulations of two-
dimensional STDBC in low-Prandtl-number fluids extending sufficiently high into the
nonlinear regime to uncover the structure of the hydrodynamic fields at increasingly
high Reynolds number.

STDBC at low Prandtl number has received much less attention than at high
Prandtl numbers, to which several contributions (Bestehorn 1993; Nitschke & Thess
1995; Schatz et al. 1995; Thess & Orszag 1995; Thess, Spirn & Jüttner 1995; Van
Hook et al. 1995) have been made in the years since Koschmieder’s (1993) survey of
the subject. Numerical simulations of surface-tension-driven flows in small-Prandtl-
number fluids have been performed predominantly for geometries resembling crystal
growth configurations such as two-dimensional differentially heated cavities (Strani,
Piva & Graziani 1983; Zebib, Homsy & Meiburg 1985; Carpenter & Homsy 1990;
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Ben Hadid & Roux 1992 and references therein; Kanouff & Greif 1994) and the
three-dimensional cylindrical floating-zone geometry (Levenstam & Amberg 1995).
The same applies for more recent theoretical studies using stability methods, see the
review article of Davis (1987). Numerical investigation of strongly nonlinear STDBC
in small-Prandtl-number fluids has so far not been undertaken.

In contrast to STDBC, buoyancy-driven Rayleigh–Bénard convection (RBC) has
been extensively studied numerically in the two- and three-dimensional case for both
high and low Prandtl numbers. A surprising result of the numerical studies in two
dimensions at small Prandtl number is the existence of inertial convection, for which
the buoyancy force is balanced by the inertial terms. The flow pattern associated with
this type of convection consists of rolls which act like flywheels, i.e. the amount of
energy dissipated per rotation of the roll is much less than the total kinetic energy
of the fluid motion. Another characteristic feature is that the heat transport (to be
measured in terms of the non-dimensional Nusselt number) becomes independent
of the Prandtl number. Inertial convection was apparently first observed by Veronis
(1966) in two-dimensional Rayleigh–Bénard convection between free-slip boundaries
and subsequently studied by Moore & Weiss (1973). It also exists in the axisymmetric
geometry and in the case of no-slip boundaries as demonstrated by Jones, Moore
& Weiss (1976) and Clever & Busse (1981). For STDBC an analogous regime of
convection has so far not been reported. The present work is concerned with the
existence of this regime in STDBC.

The paper is organized as follows. In §2 we define the mathematical model and
discuss its limitations. Section 3 describes the numerical scheme used in the direct
numerical simulations. Section 4 contains an account of those nonlinear flow regimes
(weak convection) that are adequately described by the viscous zero-Prandtl-number
model, to be defined below. In §5 we demonstrate that for sufficiently high Marangoni
number Ma inertial convection is established. We also explain the asymptotic scaling
laws for the dependence of the velocity and the thickness of thermal boundary layers
on the Marangoni number in the limit of large Marangoni number, Ma→∞. Finally,
we compare our results with RBC and outline possible extensions of this work. Details
of linear stability analysis and of a perturbation scheme are given in the Appendices.

2. Formulation of the problem
2.1. Basic assumptions

We consider a planar fluid layer of thickness d with a free upper surface as sketched
in figure 1. Our theoretical model involves the following basic assumptions: (i) zero
buoyancy force, (ii) non-deflecting upper surface, (iii) two-dimensional motion, (iv)
free-slip boundary conditions at the bottom.

The considerable simplification of the problem that is achieved by these assumptions
is justified because STDBC in low-Prandtl-number fluids is still poorly understood.

The first assumption (i) is made to study the effects of purely thermocapillary
forcing. The neglect of buoyancy is justified if the ratio of the Rayleigh to the
Marangoni number Ra/Ma, measuring the relative strength of buoyancy and surface
tension forces, is small. From Ra/Ma ∝ gd2, where g denotes the acceleration due
to gravity and d is the layer thickness, it follows that buoyancy effects can be
reduced by working with sufficiently shallow layers or even completely suppressed in
an experiment in a microgravity environment. Under terrestrial conditions the ratio
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Figure 1. Schematic of the primary instability in surface-tension-driven Bénard convection: the
thermally induced surface shear is not strong enough to overcome viscous dissipation (a) unless the
temperature difference across the layer exceeds a finite instability threshold above which convection
sets in (b).

Ra/Ma is approximately 0.04 for a layer of liquid tin of 1 mm depth (see Ginde et
al. (1989) for material properties).

Assumption (ii) is adopted for reasons of conceptual simplicity and computational
economy. It has already proven useful in the numerical investigation of STDBC in
high-Prandtl-number fluids (Bestehorn 1993; Thess & Orszag 1995). A non-deflecting
free surface inhibits vorticity generation due to free-surface curvature (Longuet-
Higgins 1992; Sarpkaya 1996) and permits us to study the thermocapillary vorticity
production in its pure form. Mathematically, the neglect of surface deflection is
justified when the dynamic Bond number of thermocapillary convection is small,
which is usually the case (Davis 1987).

The motivation to employ assumption (iii) is twofold. On the one hand, two-
dimensional problems can be investigated numerically up to very high Marangoni
numbers for which three-dimensional simulations are prohibitively expensive. On the
other hand, quasi-two-dimensional convection in low-Prandtl-number fluids can be
experimentally realized by applying a homogeneous magnetic field parallel to the free
surface of the fluid. If the magnetic interaction parameter N = σelB

2l/ρV (where
σel , B, l, ρ, V denote electrical conductivity, magnetic field strength, lengthscale,
density and characteristic velocity) is sufficiently high, the vorticity will align with the
magnetic field, and the velocity field becomes quasi-two-dimensional (Moreau 1990;
Davidson 1995). For a laterally unbounded system the governing hydromechanic
equations decouple from the equations for the magnetic field, and the system behaves
as if the magnetic field were absent. Thus, assumption (iii) is not only desirable from
the computational viewpoint, but is also physically legitimate.

Our reasons for working with assumption (iv) become apparent in the light of
preliminary computations performed with the no-slip boundary condition at the
bottom. For this case the transition from weak to inertial convection is found to
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occur only after a time-dependent (travelling wave) regime has been established, and
inertial convection exhibits complex time dependence upon increasing the Marangoni
number. With a free-slip bottom the generation of secondary vorticity is suppressed.
The resulting behaviour is much simpler and provides the basis for an understanding
of the more complex phenomena in the no-slip case.

2.2. Governing equations

We choose Cartesian axes with z perpendicular to the layer and all flow independent
of the coordinate y. We apply periodic boundary conditions in the horizontal x-
direction with periodicity length L. The fluid is assumed to be an incompressible
Newtonian liquid satisfying the Navier–Stokes equation together with the continuity
and heat equations. These equations read

∂v

∂t
+ (v · ∇)v=−∇p

ρ
+ ν∆v, (2.1)

∇ · v= 0, (2.2)

∂T

∂t
+ (v · ∇)T = κ∆T . (2.3)

Here v = vxex+vzez is the velocity vector, and ρ, ν and κ denote the density, kinematic
viscosity and thermal diffusivity of the fluid. The surface tension acting at the free
surface is assumed to be a linearly decreasing function of temperature,

σ = σ(Tr)− γ(T − Tr), (2.4)

where Tr stands for a reference temperature.
At the isothermal, stress-free bottom at z = 0 the normal component of the velocity,

the tangential stresses and the temperature satisfy the equations

vz = 0,
∂vx

∂z
= 0, T = Tb. (2.5)

The boundary conditions at the free surface located at z = d are more complicated.
Because of the non-deflecting surface the kinematic boundary condition reduces to

vz = 0. (2.6)

Surface shear stresses due to surface tension gradients satisfy the equation

ρν
∂vx

∂z
=
∂σ

∂x
, (2.7)

cf. Landau & Lifshitz (1987). With σ substituted by (2.4) this boundary condition
relating surface shear to the gradient of the surface temperature is usually referred
to as the Marangoni boundary condition. The thermal boundary condition is not
straightforward. No rigorous derivation can be given. For STDBC the free surface
cannot be isothermal for a self-sustaining convective flow as the driving stresses
vanish for an isothermal free surface. Therefore, a simple phenomenological model,
sometimes called Newton’s law of cooling, is commonly used in this problem. It
relates the heat flux across the free surface to the difference between fluid surface
temperature Ts and the ambient temperature T∗ by

− λ∂T
∂z

= −α(T∗ − Ts). (2.8)

Here λ denotes the thermal conductivity of the fluid, and α is termed the heat transfer
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coefficient. In the purely conductive state (v = 0) the vertical temperature profile is
linear. The temperature difference across the layer is then given by

∆T0 = Tb − Ts =
Bi

1 + Bi
(Tb − T∗), Bi =

αd

λ
, (2.9)

with the Biót number Bi as non-dimensional parameter. It is convenient to consider
the deviation θ from the the conductive profile. We therefore write

T = θ + Tb −
∆T0

d
z, (2.10)

and obtain the heat equation in the form

∂θ

∂t
+ (v · ∇)θ = κ∆θ +

∆T0

d
vz. (2.11)

The boundary conditions for the temperature perturbation θ read

θ|z=0 = 0,

(
λ
∂θ

∂z
+ αθ

)∣∣∣∣
z=d

= 0. (2.12)

Notice that 0 6 θ 6 Tb since the fluid cannot become hotter than the bottom wall.

2.3. The small-Prandtl-number limit: viscous vs. thermal scaling

For the non-dimensionalization of the equations, scales of length, velocity, and temper-
ature perturbation θ are needed. A proper choice of scales allows the non-dimensional
quantities to remain bounded as the Prandtl number P = ν/κ goes to zero. The
relevant lengthscale of the problem is the layer thickness d. The appropriate timescale
is d/V , where V denotes the velocity scale. We will see below that with V given, the
scale of θ is determined as well. However, V is a priori unknown. It will turn out that
two different velocity scales, namely the viscous scale V = ν/d and the thermal scale
V = κ/d, are necessary to appropriately capture the dynamics of the system in the
two distinct regimes to be described in §§4 and 5.

We first non-dimensionalize the equations using the viscous velocity scaling. From
the Navier–Stokes equation we find ρν2/d2 to be the scale for pressure, and from the
heat equation it follows that P∆T0 is the scale of θ. This scaling maintains a coupling
of velocity and temperature in the limit of zero Prandtl number. The dimensionless
equations and boundary conditions read

∂v

∂t
+ (v · ∇)v = −∇p+ ∆v, (2.13)

∇ · v = 0, (2.14)

P

{
∂θ

∂t
+ (v · ∇)θ

}
= ∆θ + vz, (2.15)

∂vx

∂z
+Ma

∂θ

∂x
= vz =

∂θ

∂z
+ Bi θ = 0 at z = 1, (2.16)

∂vx

∂z
= vz = θ = 0 at z = 0, (2.17)

with the Marangoni number

Ma =
γ∆T0d

ρνκ
(2.18)

as control parameter. Assuming that all quantities remain bounded as P → 0, the
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left-hand side of (2.15) vanishes. This limit will be referred to as the viscous zero-
Prandtl-number limit. Since the boundary conditions can still be satisfied for these
equations, the viscous zero-Prandtl-number limit is spatially uniformly valid. However,
the independent dynamics of the temperature field is lost because the temperature
perturbation θ becomes a linear functional of vz , i.e. θ adjusts adiabatically to the
velocity field. Moreover, the conductive temperature profile is not perturbed by the
convective motion of the fluid. Deviations from the conductive temperature profile
arise at higher order in P .

In summary, the above equations with P = 0 describe convective flow at finite
Reynolds number in the limit of vanishing Péclet number. We are particularly
interested in the zero-Prandtl-number equations because they do not exhibit two
significantly different timescales that may give rise to numerical stiffness. Another
advantage consists in the saving of three Fourier transforms at each timestep in the
numerical solution because the nonlinear term in the heat equation drops out.

When the thermal velocity scale applies, the scales for p and θ become ρκ2/d2

and ∆T0. In contrast to the viscous scaling, the temperature profile may change
significantly due to convective motion also for small P . The equations take the
non-dimensional form

∂v

∂t
+ (v · ∇)v = −∇p+ P∆v, (2.19)

∇ · v = 0, (2.20)

∂θ

∂t
+ (v · ∇)θ = ∆θ + vz, (2.21)

∂vx

∂z
+Ma

∂θ

∂x
= vz =

∂θ

∂z
+ Bi θ = 0 at z = 1, (2.22)

∂vx

∂z
= vz = θ = 0 at z = 0. (2.23)

By taking the zero-Prandtl-number limit in the above equations we obtain the Euler
equation, i.e. the thermal zero-Prandtl-number limit describes convection at finite
Péclet number in the limit of infinite Reynolds number. Since two velocity boundary
conditions are in general incompatible with the Euler equation, the limit P = 0
cannot be spatially uniformly valid for thermal scaling. Therefore, the numerical
scheme presented in §3 cannot take advantage of the thermal zero-Prandtl-number
limit.

In their investigation of axisymmetric RBC, Jones et al. (1976) use the Péclet
number Pe to distinguish weak convection (Pe small compared with unity) and
strong convection (Pe not small compared with unity). We shall use these terms
accordingly, i.e. convection is weak when the viscous scaling applies for P → 0.
Viscous and thermal units of the physical quantities are summarized in table 1. We
use viscous units throughout §§3 and 4.

2.4. Nusselt number

The effectiveness of convective heat transport is measured by the non-dimensional
Nusselt number Nu = Q/Qc defined as the ratio between the total heat flux Q and the
conductive heat flux Qc. By definition, Nu = 1 in the purely conductive state. Whereas
for RBC between isothermal plates both Qc and Q are uniquely defined in terms of
measurable quantities, the definition of Nu for convection between non-isothermal
boundaries such as STDBC or RBC with free surfaces involves some ambiguity.
We shall demonstrate below that if the conventional definition of Qc is applied, the
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Quantity Viscous unit Thermal unit

Length d d
Velocity ν/d κ/d
Time d2/ν d2/κ
Temperature perturbation θ P∆T0 ∆T0

Pressure ρν2/d2 ρκ2/d2

Table 1. Summary of viscous and thermal units

Nusselt number will not represent an appropriate measure of the effectiveness of
convective heat transport for our model of STDBC. The problem is resolved by a
modified definition of Qc. The total heat flux in STDBC can be conveniently evaluated
at the free surface. Upon using (2.8), (2.9) and (2.10) we obtain

Q = −λ
∫ L

0

∂T (x, d)

∂z
dx =

λL∆T0

d
+ αL〈θs〉, (2.24)

where

〈θs〉 =
1

L

∫ L

0

θ(x, d)dx (2.25)

denotes the mean perturbation of the surface temperature. Using the conventional
definition Qc = λL∆T0/d for the conductive heat flux we find

Nu = 1 + Bi
〈θs〉
∆T0

. (2.26)

Since 〈θs〉 < ∆T0 (the free surface cannot become hotter than the bottom), the
Nusselt number as defined above is bounded by 1+Bi. The reason for this unphysical
behaviour is twofold. On the one hand, it reflects an intrinsic deficiency in the
phenomenological boundary condition (2.8) which imposes the upper bound α(T0−T∗)
on the heat flux at the free surface. On the other hand, the above definition of Qc
ignores the fact that the mean temperature difference

〈∆T 〉 = ∆T0 − 〈θs〉 (2.27)

between the bottom and the free surface is smaller in the convective state than in the
conductive state in contrast to convection between isothermal boundaries where the
temperature difference is prescribed. This observation suggests a modified definition
of Qc, namely to define Qc as the total heat flux that would occur with the fluid at
rest but with the free-surface temperature prescribed as in the convective state. This
definition may seem impractical, but for the case of periodic boundary conditions the
total conductive heat flux is uniquely determined by the mean temperature difference
〈∆T 〉. We have

Qc =
λL〈∆T 〉

d
, (2.28)

which leads to the Nusselt number

Nu =
1 + Bi 〈θs〉/∆T0

1− 〈θs〉/∆T0

. (2.29)
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This definition correctly reflects the unlimited growth of the Nusselt number when
strong convection heats the free surface up to the bottom temperature and 〈∆T 〉 → 0.
The shortcomings of the previous definition of Nu are particularly obvious for Bi = 0.

In the viscous zero-Prandtl-number limit Nu equals unity to leading order in P ,
i.e. we must proceed to higher order in P to obtain a useful result for Nu. To this
end we consider the heat equation (2.15), and assume that both the velocity and the
temperature perturbation are expanded in powers of P , i.e. (v, θ) =

∑∞
n=0 P

n
(
v(n), θ(n)

)
.

Averaging the equations at order P 0 and P 1 horizontally (i.e. over planes z = const.)
we find

∂2

∂z2
〈θ(0)〉= 0, (2.30)

∂2

∂z2
〈θ(1)〉= ∂

∂t
〈θ(0)〉+

∂

∂z
〈v(0)
z θ

(0)〉, (2.31)

since by continuity 〈v(i)
z 〉 = 0 at all orders. The horizontal component in ∇ ·

(
v(0)θ(0)

)
makes no contribution to equation (2.31). Equation (2.30) implies 〈θ(0)〉 = 0. We then
have

d2

dz2
〈θ(1)〉 =

d

dz
〈v(0)
z θ

(0)〉, (2.32)

which is easily solved for 〈θ(1)〉. We find

〈θ(1)〉
∣∣
z=1

=
1

Bi+ 1

∫ 1

0

〈v(0)
z θ

(0)〉dz. (2.33)

The mean surface temperature perturbation 〈θs〉 (in physical units) and Nu−1 become

〈θs〉=P 2 ∆T0

Bi+ 1

∫ 1

0

〈v(0)
z θ

(0)〉dz + O(P 3), (2.34)

Nu− 1 =P 2

∫ 1

0

〈v(0)
z θ

(0)〉dz + O(P 3). (2.35)

Both quantities scale as P 2 in the viscous zero-Prandtl-number limit.

3. Numerical method
The numerical procedure uses a spectral spatial discretization with Fourier series in

the horizontal x-direction and a Chebyshev polynomial expansion in the vertical z-
direction (Canuto et al. 1988; Gottlieb & Orszag 1977). Because of incompressibility,
the Fourier components of vx with non-zero wavenumber k can be computed from
the Fourier components of vz . The pressure is eliminated by taking twice the curl of
the momentum equation, giving

∂

∂t
∆vz − ∆2vz =

∂

∂x
(vz∆vx − vx∆vz) . (3.1)

Equation (3.1) represents an evolution equation for vz . Note that we are using the
equations in the non-dimensional form obtained with viscous units. Assuming that θ
is known at the free surface, all Fourier components of the velocity are determined
by this equation and the boundary conditions except for the mean flow U(z, t) = 〈vx〉.
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It satisfies the equation

∂U

∂t
− ∂2U

∂z2
= − ∂

∂z
〈vxvz〉 , (3.2)

and the boundary conditions ∂U/∂z = 0 at z = 0 and z = 1 since θ is periodic.
Equation (3.2) is obtained by taking the horizontal average of the x-momentum
equation.

In order to derive the discrete representation we put w = ∆vz and introduce uk ,
wk and θk as the Fourier components with wavenumber k of vz , w and θ. Splitting
(3.1) into two second-order equations and decomposing (3.1), (2.15), (2.16), (2.17) into
Fourier modes yields the set(

∂2

∂z2
− k2

)
wk −

∂wk

∂t
=−

[
∂

∂x
(vz∆vx − vx∆vz)

]
k

, (3.3)(
∂2

∂z2
− k2

)
uk − wk = 0, (3.4)(

∂2

∂z2
− k2

)
θk + uk − P

∂θk

∂t
=P [∇ · (v θ)]k , (3.5)

of evolution equations for the Fourier components wk , uk and θk . The respective
boundary conditions are

wk = uk = θk = 0 at z = 0, (3.6)

wk +Mak2θk = uk =
∂θk

∂z
+ Bi θk = 0 at z = 1. (3.7)

Note that the incompressibility condition has been used in deriving the boundary
conditions on w, and that the mean flow equation (3.2) complements this set of
equations.

For time differencing we use the implicit backward Euler scheme for the linear
terms and the explicit second-order Adams–Bashforth scheme for nonlinear terms
on the right-hand sides. By that, for each wavenumber, a system of three linear
second-order boundary value problems is obtained. We have(

D2 − k2 − 1

∆t

)
wn+1
k =

wnk
∆t
−AB

{[
∂

∂x
(vz∆vx − vx∆vz)

]
k

}n
, (3.8)(

D2 − k2
)
un+1
k − wn+1

k = 0, (3.9)(
D2 − k2 − P

∆t

)
θn+1
k + un+1

k = P

(
θnk
∆t

+ AB {[∇ · (v θ)]k}
n

)
, (3.10)

with D = d/dz and AB {f}n = (3fn − fn−1)/2 from the Adams–Bashforth formula.
For the mean flow, time differencing gives(

D2 − 1

∆t

)
Un+1 =

Un

∆t
−AB

{
∂

∂z
〈vzvx〉

}n
. (3.11)

From (3.8)–(3.10) we see that the boundary conditions on vz and θ can be applied
directly, i.e. we can solve (3.9) and (3.10) in that order. The solution of the full
system including (3.8) cannot be obtained directly in this way because the Marangoni
boundary condition involves both w and θ. However, if we represent the solutions as

wk = w0
k + µw1

k (3.12)
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uk = u0
k + µu1

k (3.13)

θk = θ0
k + µθ1

k , (3.14)

then the boundary condition w0
k = 0 can be imposed at z = 1 and (3.8)–(3.10) can be

solved one after the other for w0
k , u

0
k and θ0

k . The problem for w1
k , u

1
k and θ1

k comprises
(3.8)–(3.10) with zero right-hand sides and e.g. w1

k (z = 1) = 1 as boundary condition.
The unknown coefficient µ is then computed from the Marangoni boundary condition.
In the numerical simulations the size ∆t of the timestep is fixed. Hence the functions
w1
k , u

1
k and θ1

k are only computed once at the start for each wavenumber k. They are
stored and reused at every timestep.

In the discrete Chebyshev representation each set (3.8)–(3.10) reduces to a tridiago-
nal system of linear algebraic equations for the expansion coefficients. The boundary
conditions are incorporated by means of the τ-method, which results in two filled
rows. Nonlinear terms are computed pseudospectrally, i.e. in physical space using fast
Fourier and fast Chebyshev transforms. Dealiasing is implemented by means of the
2/3-rule.

Two independent tests were performed for validation of the numerical code. The
first is based on the linear stability analysis given in Appendix A. We compare
the growth rate β obtained from a numerical simulation with zero nonlinear terms
with the exact value from linear stability analysis. For Ma = 70, P = 0.1, Bi = 0,
k = 1.7003 the simulation gives β = 2.300970, which differs by a relative error of
only 3× 10−5 from the exact value β = 2.300904 of linear stability theory (numerical
parameters: Nz = 33 collocation points in the vertical direction, timestep 2.5× 10−5).

The second test is based on the perturbation solution outlined in the appendix.
This solution is valid in the weakly nonlinear regime near the instability threshold,
where we observe excellent agreement with direct numerical simulations. For Bi = 0,
k = 1.7003 and Ma = 58 the kinetic energy of steady convection rolls obtained from
the numerical simulation differs from the result of the perturbation procedure by a
relative error of 0.33% for P = 0 and 0.43% for P = 0.1 (numerical parameters of
direct simulation: Nz = 33 collocation points in the vertical and Nz = 64 points in
the horizontal directions). This indicates that the computation of the nonlinear terms
in the numerical code is also correct.

4. The regime of weak convection
4.1. Primary instability and small-amplitude solutions

We start with a linear stability analysis of the basic conductive state v = θ = 0 by
repeating Pearson’s (1958) computations with the no-slip boundary condition replaced
by our free-slip boundary condition (2.17a). This straightforward analysis provides
the basis for the subsequent nonlinear studies. Details are given in Appendix A. We
find the neutral stability condition

Ma(k, Bi) =
8k sinh(k)2(k cosh(k) + Bi sinh(k))

cosh(k)3 + k sinh(k)− (2k2 + 1) cosh(k)
. (4.1)

Representative neutral stability curves Ma(k) for fixed values of the Biót number
Bi are plotted in figure 2(a). The instability threshold is given by the minimum
Mac = Ma(kc, Bi) of Ma(k, Bi) with respect to k for fixed Bi. Both the critical
wavenumber kc and the critical Marangoni number Mac increase with increasing
Biót number. In the limit Bi → ∞ we find kc → kmax ≈ 2.5054 (cf. figure 2b). The
critical Marangoni number Mac as function of Bi in this limit is easily obtained
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Figure 2. Linear stability results for a free-slip bottom: (a) Neutral stability curves for different Biót
numbers Bi. The minima of these curves represent the instability threshold for given Bi. The neutral
stability curves are independent of the Prandtl number P . (b) Wavenumber kc at the instability
threshold as function of Bi. In the limit Bi→∞ kc approaches the finite value 2.5054.

by inserting kmax into (4.1). For any given Bi, both Mac and kc are smaller than in
the case of no-slip boundary conditions at the bottom. In particular, for Bi = 0 we
have Mac ≈ 57.598, kc ≈ 1.7003 to be compared with Mac ≈ 79.607, kc ≈ 1.9929
as obtained by Pearson (1958) for the no-slip case. The higher critical Marangoni
numbers in the no-slip case are due to the stabilizing effect of friction at the bottom,
which is also known from RBC (Chandrasekhar 1961).

In the weakly nonlinear regime, the only feasible planform of steady two-dimen-
sional convection consists of stationary rolls. We have obtained the amplitude and
shape of the rolls in this regime by means of direct numerical simulations and
of a standard perturbation method described in Appendix B. Since the perturbation
method requires much less computation than direct numerical simulations, it facilitates
the exploration of large ranges of Biót and Prandtl numbers in the weakly nonlinear
regime. In these computations the wavenumber k is taken equal to the critical
wavenumber kc(Bi) (cf. figure 2b). We have found that for 0 6 Bi 6 10 with P = 0
and 10−3 6 P 6 103 the coefficient Ma(2) in the expansion (B 3) (cf. Appendix B) is
positive, i.e. the bifurcation to the convective state is supercritical.

The investigation of different values of P and Bi by numerical simulations is more
expensive. We will therefore not consider different values of the Biót number any
further. Instead, we focus on the case of prescribed heat flux (Bi = 0) as this case
is canonical for more realistic models of heat transport across the free surface also.
All of the numerical simulations reported in the remainder of the paper have been
performed with Bi = 0 for a primitive convection cell (L = 2π/kc, kc = 1.7003)
containing two counter-rotating rolls. Figure 3 shows streamfunction and vorticity
plots of a single roll from direct numerical simulations with P = 0. The vorticity is
defined by ω = ∂xvz − ∂zvx. For Ma = 57.7 (figure 3a) the solution is almost identical
with the neutral stability solution. Streamfunction and vorticity do not display any
perceptible lateral asymmetry. The maximum of the streamfunction (corresponding
to a stagnation point of the flow) is closer to the free surface than to the bottom since
vorticity is generated at the free surface only. With increasing amplitude, vorticity
is advected laterally and into the interior and the lateral symmetry is lost. This is
accompanied by a shift of the streamfunction maximum towards the downflow region
and the bottom. The effect is visible in the plots for Ma = 60 (figure 3b) but still
relatively slight. It is much more pronounced in the plots for Ma = 70 (figure 3c).
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Figure 3. Weak convection: Streamfunction (ψ) and vorticity (ω) plots of a steady single roll
for zero Prandtl number P and Bi = 0 as obtained from the numerical simulations. Marangoni
numbers are Ma = 58 (a), Ma = 60 (b) and Ma = 70 (c). Spacing of the contours is equidistant.
The direction of the flow is counterclockwise. Numerical resolution is Nx = 64, Nz = 33.

If the number of excited modes is small, as it is in the weakly nonlinear regime,
good agreement in an integral characteristic of the flow such as the kinetic energy
indicates good overall representation of the flow by the perturbation solution. On the
contrary, significant differences in an integral characteristic will certainly invalidate the
perturbation solution. We illustrate the limited validity of the perturbation solution
for the case P = 0 by a comparison of the kinetic energy as obtained from the
perturbation scheme and from direct numerical simulations. For a convection cell of
length L = 2π/kc with kc = 1.7003 the perturbation scheme gives

E =
1

2

∫ L

0

∫ 1

0

v2dxdz = E1(Ma−Mac) + E2(Ma−Mac)2, (4.2)

with Mac = 57.598 and E1 = 6.813, E2 = 0.186. Figure 4(a) shows the energy as a
function of Ma from simulations in comparison with (4.2). The perturbation solution
provides an excellent approximation to the correct solution near Mac (cf. the test in
§3), and it is still adequate at Ma = 60 with a relative error in the energy of 2%,
but inadequate at Ma = 70 with an error of 35%. We attribute this to the increased
asymmetry of the vorticity distributions, which cannot be well represented by the two
mode perturbation ansatz (cf. figure 3 for plots of hydrodynamic fields).

After the analysis of the zero-Prandtl-number case we now wish to demonstrate
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Figure 4. Kinetic energy of a pair of stationary rolls for weak STDBC. (a) Comparison of the
direct numerical simulation (squares) with the result of perturbation theory (full line) for the case
P = 0. (b) Results of numerical simulations for finite Prandtl number illustrating that for weak
convection the zero-Prandtl-number limit is approached smoothly. However, upon increasing Ma,
the P = 0 prediction becomes increasingly inaccurate as exemplified by the increasing slope near
P = 0. The lines are drawn to guide the eye.

numerically that it provides a reasonable approximation for small but finite P . Figure
4(b) displays the kinetic energy of steady solutions at finite P normalized to the
energy at P = 0 for different Ma. For given Ma the energy is maximal for P = 0
and decreases monotonically with P . This is expected, since at finite P the thermal
nonlinearity can contribute to saturation. Apparently the limit P = 0 is approached
smoothly and good agreement to within a few percent is obtained for P 6 10−2.
Furthermore, figure 4(b) shows that the predictive power of the zero-Prandtl-number
model (exemplified by the slope of E(P )/E0 near P = 0) for fixed P deteriorates
with increasing Ma. We conclude that the effect of the thermal nonlinearity will be
relatively larger for the asymmetric vorticity distributions associated with increasing
Ma.

4.2. Breakdown of the viscous zero-Prandtl-number limit

For the range of Marangoni numbers explored so far, the zero-Prandtl-number
equations can be used to obtain approximate steady solutions valid for small but finite
P . This useful property breaks down in a dramatic way when Ma becomes larger
than Mai ≈ 73.4. In numerical simulations of the zero-Prandtl-number equations we
then observe a catastrophic exponential growth of the kinetic energy with no tendency
to nonlinear saturation, which finally leads to a blow-up of the numerical code. We
have checked by performing simulations with different initial conditions and spatial
resolutions that this energy catastrophe is a robust feature of the zero-Prandtl-number
model of two-dimensional STDBC. We illustrate this surprising fact with a simulation
performed at Ma = 80. The steady solution corresponding to P = 0.1 is chosen as
initial condition, and the Prandtl number is put equal to zero at t = 0. Figure 5 shows
snapshots of the temporal evolution of streamfunction and vorticity fields. At t = 0.25
(figure 5a) streamfunction and vorticity look similar to the plots for Ma = 70 shown in
figure 3. As time increases, vorticity is carried further away from the free surface with
the flow. The plots for t = 1.25 (figure 5b) display the buildup of vorticity around the
perimeter of the roll, whose streamfunction accordingly becomes more symmetrical.
The process continues and leads to an almost constant vorticity distribution in the
interior of the roll, as can be seen from the vorticity plot for t = 2.25 (figure 5c). In
the course of the further evolution, the interior region of constant vorticity enlarges,
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Figure 5. Energy catastrophe at zero Prandtl number: temporal evolution of streamfunction and
vorticity in a simulation with P = 0 at Ma = 80. Snapshots taken at time t = 0.25 (a), t = 1.25 (b)
and t = 2.25 (c). The total kinetic energy in (c) is by more than two orders of magnitude higher
than in (a). Numerical resolution is Nx = 128, Nz = 65.

which causes steeper flanks along the perimeter of the constant region. Apart from
that, the shape of the vorticity profile remains essentially the same.

The temporal evolution of the kinetic energy in this run is displayed in figure 6. We
observe an exponential growth in the energy up to values of 107 with no indication
of saturation. This behaviour can be explained on the basis of the observation
of constant vorticity together with the high symmetry of the streamfunction. For
an almost constant vorticity distribution the Navier–Stokes nonlinearity becomes
effectively irrotational. Since it is then balanced by pressure gradients, it ceases to
provide a means of nonlinear saturation. In the zero-Prandtl-number equations, the
driving shear stress at the free surface represents a linear functional of the velocity
field and will therefore grow without bound with the velocity of the interior motion.
Without the contribution of the nonlinear term, only linear forcing and dissipation
terms act in the equations. For sufficiently high Marangoni number the forcing will
exceed viscous dissipation, and an exponential growth of the flow amplitude with
time occurs.

Although none of our simulations of the zero-Prandtl-number equations for
Ma > Mai exhibits a tendency to nonlinear saturation, we cannot completely rule out
the possibility of saturation by a further reorganization of the vorticity distribution.
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Figure 6. Temporal evolution of the kinetic energy E in the simulation shown in figure 5. E is given
in viscous units for a single pair of rolls. Square symbols indicate the times at which snapshots for
figure 5 were taken. Inset shows a linear plot of the energy.

A mathematically rigorous proof of unlimited energetic growth for t → ∞ would
require an estimate showing that dE/dt has a positive lower bound for any admis-
sible hydrodynamic field. Unfortunately, we were not able to derive such a bound by
energy stability methods (Straughan 1992). While it appears unlikely that nonlinear
saturation is possible for a laminar flow, the system might well evolve into a state of
two-dimensional turbulence that is out of reach for our present computational capa-
bilities. Figure 5(a) shows the development of a vortex sheet below the free surface.
For sufficiently high Reynolds number vortex sheets are prone to Kelvin–Helmholtz
instability which can lead to turbulence. Since the Reynolds number increases ex-
ponentially with time, it is clear that the flow displayed in figure 5(c) may become
unstable at late times, leading to a complex spatio–temporal behaviour. The result-
ing turbulent state could dissipate kinetic energy more efficiently than the laminar
boundary-layer flow due to the enstrophy cascade to high wavenumbers (Frisch 1995).
Detection of this hypothetical state would require either direct numerical simulations
at much higher spatial resolution or a linear stability analysis of the growing solution,
both beyond the scope of the present work.

Finally, it is interesting to note that the growth of the energy is not affected by the
circumstance that the curl of the nonlinear term does not exactly vanish in contrast
to RBC between free-slip plates as noted by Jones et al. (1976). This shows that the
energy catastrophe is an intrinsic feature of two-dimensional zero-Prandtl-number
convection, independent of the specific forcing mechanism.

5. The regime of inertial convection
5.1. Transition to strong convection

The unbounded growth of the flow amplitude no longer takes place if the numerical
simulations are performed for finite values of the Prandtl number. This can be
attributed to the action of the thermal nonlinearity in equation (2.15). Steady solutions
are also attained for Ma > Mai. For small P we observe the almost constant vorticity
distributions in the interior of the individual rolls that were described in the previous
section. Because of the thermal mechanism of nonlinear saturation, physical quantities
are of similar magnitude on the thermal scale. This scaling is characteristic of strong
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Figure 7. (a) Kinetic energy E of a single pair of rolls in thermal units as function of Ma. Transition
to inertial convection is discontinuous for sufficiently small P . In the range of validity of the viscous
zero-Prandtl-number limit the energy scales with P 2. (b) Nusselt number as function of Ma. As for
the kinetic energy, Nu − 1 scales with P 2 for Ma < Mai, where the viscous zero-Prandtl-number
limit is valid. Spatial resolution in the inertial regime is Nx = 64, Nz = 65 for P > 0.01, and
Nx = 128, Nz = 65 for P 6 0.01.

convection. We shall call this regime inertial convection in analogy to RBC, since the
flows exhibit the flywheel property described in the Introduction. Notice that we use
thermal units from now on for the rest of this section.

The transition from weak to inertial convection occurs in a narrow interval of
Marangoni numbers and leads to significantly different flow fields. This can also be
inferred from the integral quantities plotted in figure 7, where the kinetic energy of
a single convection cell and the Nusselt number are shown as function of Ma for
different values of P . The replacement of the viscous by the thermal scaling is evident
from the almost identical curves of Nu(Ma) for P = 0.01 and P = 0.005 for Ma > 80.
Moreover, the transition to the inertial regime is discontinuous for these small Prandtl
numbers. The subcritical bifurcation associated with the discontinuous transition is
shown schematically in figure 8. For a given Prandtl number P we define Maw(P )
as the minimum value of Ma for the inertial branch and Mai(P ) as maximum value
of Ma for the weak solution branch. Table 2 lists Mai and Maw for several Prandtl
numbers. Notice that both Mai and Maw are shifted towards higher values as P
increases.
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Figure 8. Schematic bifurcation diagram. The transition to inertial convection proceeds via a
subcritical bifurcation for P < Pi. Inertial and weak convection coexist in the interior of the region
bounded by the curves Maw(P ) and Mai(P ). See table 2 for values of Maw and Mai for four
different Prandtl numbers.

P Maw Mai

0 71.3 73.4
0.0025 72.1 74.0
0.005 73.0 74.5
0.01 75.1 75.7

Table 2. Estimates for Maw and Mai from numerical simulations in a primitive convection cell with
periodicity length as at onset of convection. The figures represent upper bounds for Maw and lower
bounds for Mai with an accuracy of 0.1.

The bifurcation is of hydrodynamical origin since even for P = 0 an inertial branch
of steady solutions exists in addition to the weak branch from Maw(0) ≈ 71.3 on.
For these flows constant-vorticity regions begin to form due to spreading of surface-
generated vorticity around the roll perimeter, but viscous dissipation is still sufficient to
prevent unbounded exponential growth. However, the kinetic energy associated with
the inertial solutions at P = 0 increases dramatically (by two orders of magnitude)
over the narrow interval 71.3 < Ma < 73.3 of Marangoni numbers. Because of
the high cost of these computations due to slow convergence and high resolution
requirements we stopped tracing this branch atMa = 73.3. It may or may not continue
beyond the inertial threshold Mai. At finite P advection of temperature contributes to
nonlinear saturation, i.e. for fixed Ma the flow amplitude is reduced. This accounts for
the monotonic growth of Maw and Mai with P . Moreover, increasing P reduces the
saturation energies on the inertial branch, i.e. it leads to smaller Reynolds numbers.
Thus, by increasing P the branches can eventually join smoothly. The subcritical
bifurcation vanishes at a Prandtl number Pi in the interval 0.01 < Pi < 0.02. We can
formally distinguish weak and inertial convection only for Prandtl numbers below Pi.
As a final observation we note that for inertial convection both kinetic energy and
Nusselt number increase as P is reduced as can be seen in figure 7. The surprising
effect that heat transport becomes more efficient by reducing P exists also in RBC in
two dimensions between free-slip boundaries (Moore & Weiss 1973).

In inertial convection, the vorticity is effectively constant in the interior of the
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individual rolls with boundary layers to match the boundary conditions. For small
P , these boundary layers are very thin, and the properties of the flow in the interior
become independent of P . In the numerical simulations, the vorticity boundary layers
determine the spatial resolution requirements. Resolution must be increased when P
is reduced. For high Marangoni numbers our simulations of a single convection cell
(L = 2π/kc) were therefore restricted to the moderately small Prandtl numbers 0.02,
0.05 and 0.1. The highest Marangoni number was reached for P = 0.1. We have
ensured sufficient resolution by inspection of the vorticity field. Because Chebyshev
polynomials provide a very fine spacing of collocation points near the vertical bound-
aries, insufficient resolution will mostly arise in the horizonal direction. Resolution
was increased when small-scale oscillations due to insufficiently resolved boundary
layers showed up in horizontal cuts through the layer taken at serveral values of
z. We have also checked that the vorticity has the same sign throughout the entire
domain occupied by an individual roll.

Figure 9 presents a series of temperature and vorticity plots for P = 0.1 at different
Ma. We have also plotted the horizontally averaged fields to highlight boundary layer
formation. The first plots show weak convection at Ma = 60 (figure 9a) with an
almost unperturbed temperature distribution. For Ma = 150 (figure 9b) the mean
temperature profile still appears linear, but the total temperature difference across
the layer is already significantly reduced. The isotherms are no longer parallel, but
are compressed near the bottom in the downflow region and near the free surface
in the upflow region, indicating a significant convective heat transport. Due to the
relatively large P the vorticity profile has not yet developed the pronounced constant
region that is present in all plots for higher Ma. With increasing Marangoni number
the rotation of the roll speeds up further. Correspondingly, the mean temperature
profile becomes flatter and the temperature difference across the layer decreases. At
Ma = 600 (figure 9c) the isotherms are almost vertical in the interior of the roll,
and the spacing is relatively high. From the plots for Ma = 2400 and Ma = 9600
(figures 9d and 9e) we see that the isotherms are increasingly displaced from the
interior of the roll, i.e. with increasing Ma the roll develops an isothermal core and
thermal boundary layers. This is also observed in the mean temperature profiles. Note
that the slope of the mean temperature is always the same both at the free surface
and the bottom because of the prescribed heat flux.

5.2. Asymptotic behaviour at large Marangoni number

The numerical simulations also demonstrate the existence of steady convection rolls
at large values of the Marangoni number. Figures 10 and 11 show that in the limit
Ma → ∞ simple scaling behaviour with Ma applies for the hydrodynamic fields,
which can be attributed to the boundary layer character of the temperature field (cf.
figure 9d, e).

The boundary layer structure of both the temperature and vorticity field suggests
the use of asymptotic methods to obtain approximate solutions and to derive the
scaling relations from first principles. However, because of the non-trivial geometry
and boundary conditions an asymptotic solution valid in the entire spatial domain
cannot be obtained by simple means. We shall present a simple model that does not
take into account the detailed spatial structure of the flow, but nevertheless predicts
scaling exponents in agreement with the numerical simulations. We also note that
similar scaling laws have been found previously in a boundary layer analysis of
interfacial mass transfer in the presence of convection driven by the concentration–
capillary effect (Ruckenstein 1968; Slin’ko, Dil’man & Rabinovich 1983).
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Figure 9. Inertial convection: temperature and vorticity plots of a steady single roll (P = 0.1).
Marangoni numbers are Ma = 60 (a), Ma = 150 (b), Ma = 600 (c), Ma = 2400 (d) and Ma = 9600
(e). Spacing of contours is equidistant. Axes for the mean vorticity profiles are normalized to
maximum values. In all cases, the streamfunction looks similar to figure 5(c). Note the formation
of thermal boundary layers upon increasing Ma. Parameters are given in table 3.

The model is derived in two steps. First, we ignore the detailed structure of the
velocity field and estimate the difference ∆Th in surface temperature across a single roll
on the basis of a boundary layer approximation to the heat equation. This provides
a relation between ∆Th, which generates the driving shear stress at the free surface,
and the characteristic velocity V in the thermal boundary layer. The second step
takes the mechanical problem into account in order to close the model and to bring
in the Marangoni number. We close the model with the help of the energy budget
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Figure 10. Asymptotic behaviour of inertial convection: power–law scaling with Ma of the Nusselt
number (a) and the average of the vorticity over the volume of an individual roll (b). Scaling
exponents are 1/3 for (a) and 2/3 for (b) in agreement with the boundary layer model of
§5.2.

in the steady state, where thermocapillary energy production and viscous dissipation
balance.

In the first step we consider a roll with isothermal core and thermal boundary
layers at the free surface and the bottom and suppose that the velocity in the core
and in the boundary layers is of the same order V . The boundary layer approximation
to the equation for the temperature in both layers reads

vx
∂T

∂x
=
∂2T

∂z2
, (5.1)

giving the boundary layer thickness δ ∝ V−1/2 since the width L of the roll is O(1).
From the prescribed heat flux ∂T/∂z = −1 at the top it follows that the temperature
difference across the free-surface layer is of order δ. In the steady state, the same
integral heat flux must be present at the bottom, hence the temperature difference
across the thermal boundary layer at the bottom is the same as for the free-surface
layer. The mean temperature difference 〈∆T 〉 between bottom and free surface will
therefore also be of order δ. For ∆Th we assume that it is of the same order as the
total temperature difference across the layer, i.e. it is O(δ), too.
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Figure 11. (a) The thermal boundary layer scaling relation δ ∝ V−1/2 is verified by plotting the
Nusselt number (∝ δ−1) as function of the volume average of the vorticity (∝ V ). The straight line
corresponds to Nu ∝ ω1/2. (b) The maximum value of the vorticity ωmax attained at the free surface
is proportional to Ma.

Let us now consider the balance of energy input and dissipation. Starting from the
Navier–Stokes equation, the energy budget is obtained by multiplication with v and
integration over the volume of the roll. For a steady state we have

−
∫ L

0

vxω|z=1 dx =

∫ L

0

∫ 1

0

ω2dzdx, (5.2)

since ω = ∂xvz − ∂zvx vanishes on all other boundaries. On the left-hand side ω
is estimated from the Marangoni boundary condition (2.22) with the temperature
gradient ∆Th. The velocity is of order V , which was already used above. For the
right-hand side we assume that the bulk gives the major contribution to the integral.
Because of the flywheel property, vorticity and velocity are of the same order in the
core, hence ω is of order V on the right-hand side in equation (5.2). With these
estimates of order it follows from (5.2) that

MaV∆Th ∝ V 2. (5.3)

Using ∆Th ∝ δ ∝ V−1/2, 〈∆T 〉 ∝ δ and the definition (2.29) we obtain

V ∝Ma2/3, ∆Th ∝Ma−1/3, δ ∝Ma−1/3, Nu ∝Ma1/3. (5.4)



170 T. Boeck and A. Thess

Ma Nx Nz Nu ω̄ E ωmax

1200 256 65 3.24 65.1 450 716
2400 512 65 4.12 102 1080 1430
4800 512 65 5.18 161 2660 2830
9600 512 65 6.54 256 6710 5670
19200 1024 129 8.26 408 17000 11300
38400 1024 129 10.42 650 43000 22700

Computed exponent 0.336 0.671 1.34 1.00
Predicted exponent 1/3 2/3 4/3 1

Table 3. Numerical data from simulations with P = 0.1. Nx and Nz denote the number of collocation
points in x and z. E stands for the kinetic energy of a single convection cell consisting of a pair
of counter-rotating rolls. See text for meaning of other symbols. The scaling exponents have been
computed using the data from Ma = 4800 on.

The scaling relations are in good agreement with our numerical data. Figure 10
shows the Nusselt number and the volume average of the vorticity ω̄ as function of
Ma. Good power-law scaling applies for about one decade of Marangoni numbers
for P = 0.1. Scaling exponents computed from the data deviate by only about 1%
from the predicted values (cf. table 3 for the data from the simulations and further
scaling exponents for other quantities). Particularly good agreement with the scaling
exponent from the data only about 0.2% in error is obtained for the relation between
Nu and ω̄ plotted in figure 11(a).

As mentioned before, we have not attempted to model corner regions. Nevertheless,
a prominent feature of the vorticity field visible in figure 9(e) is a corner effect, namely
the peak at the free surface in the downflow region. Let us briefly discuss the origin of
this peak and its effect on the validity of our model. It can be expected that the peak
results from the breakdown of the boundary layer approximation for T in the corner.
We have confirmed this by numerical simulations with prescribed streamfunction
when the temperature acts as a passive scalar. In these simulations constant vorticity
was prescribed in the interior of the cell with thin layers to satisfy ω = 0 on all
boundaries. The structure of the temperature field is fairly similar to simulations
of the full Marangoni problem at sufficiently small P . On the free surface ∂T/∂x
has a maximum of order 1 at a distance of order δ from the stagnation point. The
Marangoni boundary condition turns this into the vorticity peak with a height of
order Ma present in the simulations of the full problem. Simple arguments show that
the contributions from this peak are not dominant in the integrals on either side in
equation (5.2), but they appear to be of the same order as the terms considered in
deriving the scaling relation. Figure 11(b) shows the scaling of the maximum vorticity
with Ma.

6. Discussion and conclusions
With the numerical simulations reported in the previous sections we have explored

a large range of Marangoni numbers. We feel that we have analysed most of the
essential physical phenomena contained in our two-dimensional model of STDBC at
small Prandtl number. The major result of this work consists in the demonstration
that inertial convection is not only a feature of RBC but also of purely STDBC.

In our model of STDBC, a second critical Marangoni number must be exceeded for
inertial convection to occur. This is not the case in two-dimensional free-slip RBC. In
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this system, the nonlinear term in the Navier–Stokes equation is already irrotational
for the neutral stability mode, and the regime of weak convection is not present.
However, this is not typical of inertial RBC. For no-slip boundary conditions there is
also a regime of weak convection, and inertial convection occurs only for Rayleigh
numbers beyond a critical value Rai that is larger than the instability threshold. Busse
& Clever (1981) have computed an analytical estimate for Rai, which is about four
times larger than the threshold Rac of convection. This is in reasonable agreement
with numerical findings (Clever & Busse 1981). For the axisymmetric geometry, Jones
et. al. (1976) have also found Rai > Rac with free-slip top and bottom boundaries. In
the two-dimensional free-slip case STDBC and RBC both exhibit increasing strength
of the convective heat transport with P → 0 in the inertial regime. This is in contrast
to the other cases of RBC, where increasing P always gives higher Nusselt number.
However, a subcritical bifurcation to inertial convection as in our model of STDBC
is not known from any of the systems displaying inertial RBC.

In contrast to the critical parameters for the onset of convection, which are obtained
from a linear analysis, the computation of the inertial Rayleigh/Marangoni number
in the limit P → 0 is a nonlinear problem. Jones et. al. (1976) have formulated
this problem for their axisymmetric model of RBC. It was solved analytically by
Proctor (1977) for a different model of RBC with suitably simplified geometry,
namely a cylinder with a no-slip perimeter on which the temperature is prescribed.
The inertial Rayleigh number Rai of this model problem is in reasonable agreement
with the analytical approximation of Busse & Clever (1981) for the layer with no-
slip boundaries. A model problem for STDBC in the same spirit as Proctor’s for
RBC could provide very valuable additional insight besides another estimate of Mai
because it reflects the transition to inertial convection more clearly. However, the
formulation of such a model problem appears to be not straightforward.

Inertial convection seems to be theoretically well established and understood, but
experimental support is apparently still lacking even for Rayleigh–Bénard systems.
In STDBC there is only the investigation by Ginde et al. (1989) to date. In contrast
to the onset of convection, transition to inertial STDBC will be accompanied by
virtually discontinuous changes in flow quantities such as the velocity amplitude.
These changes should be no more difficult to detect than the onset of convection
itself. Figure 12 displays our prediction of the onset of inertial convection in a
hypothetical two-dimensional experiment performed with the same parameters as
the Ginde et al. (1989) liquid-tin experiment. We have plotted an integral velocity
based on the kinetic energy, which should be typical of the average surface velocity,
as function of the applied temperature difference based on our numerical data for
P = 0.02 (cf. figure 7a). Buoyancy effects have been neglected.

However, the lack of experimental evidence for inertial convection in low-Prandtl-
number fluids is not merely attributable to the difficulties of handling such fluids,
but probably also to three-dimensionality. In RBC rolls become unstable to time-
dependent three-dimensional perturbations for only slightly supercritial Rayleigh
number (Clever & Busse 1974). We expect that this is also the case in STDBC. The
importance of two-dimensionality for inertial convection is reinforced by numerical
studies in three dimensions. According to Clever & Busse (1990) and Thual (1992)
the viscous zero-Prandtl-number limit does not break down, but gives results repre-
sentative for small P over the entire range of parameters studied by these authors.
However, these studies do not rule out the existence of a three-dimensional form of
inertial convection, which remains an unresolved problem, in particular for STDBC.

Within the two-dimensional model of STDBC the free-surface heat transport needs
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Figure 12. Typical average surface velocity in a layer of liquid tin (d = 0.58 cm) as function of the
applied temperature difference as predicted from our numerical results for P = 0.02. Buoyancy has
been neglected.

further investigation. As discussed in §2.4, the present thermal boundary condition
is unsatisfactory. The derivation of a more realistic boundary condition rests on the
equations of the two-layer system on which STDBC is actually based. These questions
have already been addressed by Nitschke, Bestehorn & Thess (1996) in the context of
high-Prandtl-number STDBC. Systematic investigation of the model with a no-slip
bottom is also outstanding, with interesting time-dependent phenomena expected to
occur.

We are grateful to Christian Karcher and the referees for useful comments. This
work is supported by the Deutsche Forschungsgemeinschaft under grants Th 497/9-1
and Th 497/9-2.

Appendix A. Primary instability
Based on the viscous scaling (equations (2.13)–(2.17)), the normal-mode equations

and boundary conditions (cf. Pearson 1958; Chandrasekhar 1961) read(
D2 − k2 − β

) (
D2 − k2

)
f(z) = 0, (A 1)(

D2 − k2 − Pβ
)
g(z) + f(z) = 0, (A 2)

D2f(1) +Mak2g(1) = 0, (A 3)

D2f(0) = f(0) = g(0) = 0, (A 4)

f(1) = Dg(1) + Bi g(1) = 0, (A 5)

where D = d/dz and the functions f(z) and g(z) are defined by

vz(x, z, t) = f(z)eikx+βt, θ(x, z, t) = g(z)eikx+βt. (A 6)

With β 6= 0, f(z) and g(z) take the form

f(z) = sinh (kz)− sinh ((k2 + β)1/2z) sinh (k)

sinh ((k2 + β)1/2)
, (A 7)

g(z) =
sinh (kz)

Pβ
− sinh ((k2 + β)1/2z) sinh (k)

(P − 1)β sinh(k2 + β)1/2
+ G sinh ((k2 + Pβ)1/2z). (A 8)
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The coefficient G must be chosen such that the thermal boundary condition at the
free surface is satisfied. The growth rate β is determined by the Marangoni boundary
condition (A 3), which gives an implicit analytical expression Ma(k, β, Bi, P ) for β.

For neutral stability (β = 0), the analytical solution for f and g reads

f(z) = z cosh(kz)− sinh(kz)

tanh(k)
, (A 9)

g(z) = − z
2

4k
sinh(kz) +

sinh(k) + 2k cosh(k)

4k2 sinh(k)
z cosh(kz)

−
[

(1 + Bi)(cosh(k)(2k coth(k) + 1)− k sinh(k)) + k2 cosh(k)

4k2(k cosh(k) + Bi sinh(k))

]
sinh(kz). (A 10)

The neutral stability relation (4.1) is obtained by inserting these expressions into the
Marangoni boundary condition (A 3).

Appendix B. Perturbation method
In the perturbation procedure we consider the time-independent version of equa-

tions (2.13)–(2.17) with the pressure eliminated as in (3.1), (3.2). The mean flow U
is assumed zero since the problem is translationally invariant with respect to the
horizontal coordinate. The steady finite-amplitude solution is expanded in powers of
a single, arbitrary perturbation parameter ε as

vz = εv(1)
z + ε2v(2)

z + ε3v(3)
z + . . . , (B 1)

θ= εθ(1) + ε2θ(2) + ε3θ(3) + . . . , (B 2)

Ma=Ma(0) + εMa(1) + ε2Ma(2) + . . . . (B 3)

From the expansion we obtain a set of equations at each order in ε. Ma(n−1) is deter-
mined by the solvability condition at order εn. Equation (B 3) defines the amplitude
ε as function of the Marangoni number. At leading order we recover the neutral
stability problem, giving Ma(0) as the critical Marangoni number and

v(1)
z (x, z) = f(1)(z) cos (kx), (B 4)

θ(1)(x, z) = g(1)(z) cos (kx), (B 5)

with f(1)(z) and g(1)(z) given by (A 9) and (A 10). The solvability condition at second
order gives Ma(1) = 0. The second-order solution reads

v(2)
z (x, z) = f(2)(z) cos(2kx), (B 6)

θ(2)(x, z) = g
(2)
2 (z) cos(2kx) + Pg

(2)
0 (z). (B 7)

The functions f(2)(z), g(2)
2 (z) are determined by the equations(

D2 − (2k)2
)2
f(2) =

{
f(1)D3f(1) −Df(1)D2f(1)

}
, (B 8)(

D2 − (2k)2
)
g

(2)
2 + f(2) = 1

2
P
{
f(1)Dg(1) − g(1)Df(1)

}
, (B 9)

D2f(2)(1) + (2k)2Ma(0)g
(2)
2 (1) = 0, (B 10)

D2f(2)(0) = f(2)(0) = g
(2)
2 (0) = 0, (B 11)

f(2)(1) = Dg(2)
2 (1) + Bi g

(2)
2 (1) = 0, (B 12)
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and the x-independent temperature contribution g(2)
0 (z) satisfies

D2g
(2)
0 = 1

2
PD

(
g(1)f(1)

)
, (B 13)

g
(2)
0 (0) = Dg(2)

0 (1) + Bi g
(2)
0 (1) = 0. (B 14)

The third-order solution again has a component with wavenumber k. It satisfies the
system

(D2 − k2)2f
(3)
1 = 1

2

{
D2f(2)Df(1) − f(2)D3f(1) − 3k2f(2)Df(1)

}
+ 1

4

{
f(1)D3f(2) −D2f(1)Df(2) − 3k2f(1)Df(2)

}
, (B 15)

(D2 − k2)g(3)
1 + f

(3)
1 =

P

4

{
4g(2)

2 Df(1) + 2f(1)Dg(2)
2 + 4f(1)Dg(2)

0

+g(1)Df(2) + 2f(2)Dg(1)
}
, (B 16)

D2f
(3)
1 (1) + k2Ma(0)g

(3)
1 (1) = −k2Ma(2)g(1)(1), (B 17)

D2f
(3)
1 (0) = f

(3)
1 (0) = g

(3)
1 (0) = 0, (B 18)

f
(3)
1 (1) = Dg(3)

1 (1) + Bi g
(3)
1 (1) = 0. (B 19)

Equations (B 15)–(B 19) are an inhomogeneous version of the homogeneous neutral
stability problem (A 1)–(A 5) with β = 0. The solvability condition determines the
unknown coefficient Ma(2). With Ma(2) 6= 0, the amplitude ε can be determined from
the truncated Marangoni number expansion (B 3).

We have solved all of the equations (A 1)–(A 5), (B 8)–(B 12), (B 13)–(B 14), and
(B 15)–(B 19) numerically using a finite difference scheme. To obtain the leading-
order solution we prescribe the amplitude by replacing the Marangoni boundary
condition with g(1)(1) = 1. The inhomogeneous second-order problem can then be
solved without modification since its homogeneous version will only have the trivial
solution. At third order we must again replace the Marangoni boundary condition
by g

(3)
1 (1) = 1. Ma(2) is computed from the inhomogeneous Marangoni boundary

condition (B 17) by inserting the solution of the modified third-order problem. Note
that the solvability condition is not affected by the choice of the ‘replacement’
boundary condition.
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Thess, A., Spirn, D. & Jüttner, B. 1995 Viscous flow at infinite Marangoni number. Phys. Rev.
Lett. 75, 4614–4617.

Thual, O. 1992 Zero-Prandtl-number convection. J. Fluid Mech. 240, 229–258.

VanHook, S. J., Schatz, M. F., McCormick, W. D., Swift, J. B. & Swinney, H. L. 1995 Long
wavelength instability in surface-tension-driven Bénard convection. Phys. Rev. Lett. 75, 4397–
4400.

Veronis, G. 1966 Large-amplitude Bénard convection. J. Fluid Mech. 26, 49–68.

Zebib, A., Homsy, G. M. & Meiburg, E. 1985 High Marangoni number convection in a square
cavity. Phys. Fluids 28, 3467–3476.


